PBW Bases for $U_{q}(\mathfrak{g l}(m \mid 1))$

Cailan Li

March 1st, 2023

1 The Classical Case

Let \mathfrak{g} be a lie algebra and let $\alpha \in \Pi$. Let V be locally finite \mathfrak{g}-module(action of $e_{ \pm \alpha}^{N} v=0 \forall v \in V$ for some N). Then

$$
s_{\alpha}=\exp \left(e_{\alpha}\right) \exp \left(-f_{\alpha}\right) \exp \left(e_{\alpha}\right)
$$

gives an automorphism of V as a v.s.
Lemma 1.1. (a) $s_{\alpha}\left(V_{\mu}\right)=V_{s_{\alpha}(\mu)}$
(b) $\left\langle s_{\alpha}\right\rangle_{\alpha \in \Pi}$ gives an action of B_{W} on V.
(c) $s_{\alpha}(X \cdot v)=s_{\alpha}(X) \cdot s_{\alpha}(v)$ for all $X \in U(\mathfrak{g})$.

Proof. (c) $U(\mathfrak{g})$ under the adjoint action is locally finite because on generators

- $\operatorname{ad}_{e_{i}}\left(e_{i}\right)=0$
$\bullet \operatorname{ad}_{e_{i}}^{1-a_{i j}}\left(e_{j}\right)=0 i \neq j$
- $\operatorname{ad}_{e_{i}}\left(h_{j}\right)=a_{i j} e_{i}$
- $\operatorname{ad}_{e_{i}}\left(f_{j}\right)=\delta_{i j} h_{i}$
and $\operatorname{ad}_{e_{i}}$ acts by derivations on $U(\mathfrak{g})$. Thus s_{α} gives an automorphism of $U(\mathfrak{g})$ as a vs.
Remark. $s_{\alpha}: U(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is an algebra homomorphism! Indeed one can compute

$$
\operatorname{ad}_{s_{\alpha}\left(e_{i}\right)}\left(s_{\alpha}\left(h_{j}\right)\right)=s_{\alpha}\left(e_{i}\right) \cdot s_{\alpha}\left(h_{j}\right) \stackrel{(c)}{=} s_{\alpha}\left(\operatorname{ad}_{e_{i}}\left(h_{j}\right)\right)=a_{i j} s_{\alpha}\left(e_{i}\right)
$$

and similarly with the other relations.

Now when we move to $U_{q}(\mathfrak{g})$ we will have that $U_{q}(\mathfrak{g})$ is no longer locally finite under the adjoint action anymore. Indeed we have that

$$
\operatorname{ad}_{e_{i}}^{q}\left(e_{i}\right)=e_{i}^{2}-q^{2} e_{i}^{2} \neq 0
$$

Thus the formula for s_{α} above will not give a map $U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$. However Lusztig was nevertheless able to define maps T_{α} satisfying the conditions in the lemma above.

1.1 The Braid Group Action

The idea here is to reverse the flow of logic, to start from (c) and work our way back up to the definition. Let V be a f.d. $U_{q}\left(\mathfrak{s l}_{2}\right)-$ module and $v \in V_{m}$. Then define

$$
T(v)=\sum_{a, b, c \geq 0 ;-a+b-c=m}(-1)^{b} q^{b-a c} E^{(a)} F^{(b)} E^{(c)} v
$$

Note $T: V_{q^{m}} \rightarrow V_{q^{-m}}($ set $a=c=0)$.
Remark. $T(v)$ is just the quantum version of the action of s_{α} on v. Thus T is a bijection on V (switch the roles of E, F, etc).

In general for $v \in V_{\mu}$ we have

$$
T \rightarrow T_{\alpha}, \quad E, F \rightarrow E_{\alpha}, F_{\alpha}, \quad q \rightarrow q_{\alpha}, \quad m \rightarrow\left\langle\mu, \alpha^{\vee}\right\rangle
$$

Note that $T_{\alpha}: V_{\mu} \rightarrow V_{\mu-\langle\mu, \alpha \vee\rangle \alpha}=V_{s_{\alpha}(\mu)}$ and thus why we chose m as above ${ }^{1}$.
Lemma 1.2. \forall f.d. $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules V and $v \in V$

$$
T(E v)=(-F K) T(v) \quad T(F v)=\left(-K^{-1} E\right) T(v) \quad T(K v)=K^{-1} T(v)
$$

Proof. Suffice to check on $L\left(q^{n}\right)$ by s.s.
Lemma 1.3. Let $\langle\alpha, \beta\rangle=0$. Then $E_{\beta} \cdot T_{\alpha}(v)=T_{\alpha}\left(E_{\beta} \cdot v\right)$, similarily for F_{β}.
Proof. E_{β} commutes past everything in the formula for T_{α}.
Lemma 1.4. \forall f.d. $U_{q}(\mathfrak{g})-$ modules V and $v \in V$, let $r=-\left\langle\beta, \alpha^{\vee}\right\rangle$, then

$$
T_{\alpha}\left(E_{\beta} v\right)=\left(\operatorname{ad}_{E_{\alpha}^{(r)}}\left(E_{\beta}\right)\right) \cdot T_{\alpha}(v)
$$

Theorem 1

Let $u \in U_{q}(\mathfrak{g})$. If u annihilates all finite-dimensional U-modules, then $u=0$.

Proposition 1.5. Let α be a simple root. $\forall u \in U, \exists!u^{\prime} \in U$ s.t.

$$
\begin{equation*}
T_{\alpha}(u v)=u^{\prime} T_{\alpha}(v) \tag{}
\end{equation*}
$$

for all f.d. U-modules V and $v \in V$. Furthermore $T_{\alpha}(u):=u^{\prime}$ is an algebra automorphism of U.
Proof. Existence: For $u_{1}, u_{2} \in U$ suppose we found $u_{1}^{\prime}, u_{2}^{\prime}$ satisfying $(*)$. Then $\Longrightarrow\left(u_{1}+u_{2}\right)^{\prime}:=u_{1}^{\prime}+u_{2}^{\prime}$ and $\left(u_{1} u_{2}\right)^{\prime}:=u_{1}^{\prime} u_{2}^{\prime}$ also satisfies $(*)$. Thus it suffices to show existence on generators of $U_{q}(\mathfrak{g})$, but that is exactly the content of the previous 3 lemmas.

Uniqueness: Suppose $u^{\prime}, u^{\prime \prime}$ both satisfy $(*)$ for u. Then $\left(u^{\prime}-u^{\prime \prime}\right) T_{\alpha}(v)=0$. But T_{α} is bijective and thus $\left(u^{\prime}-u^{\prime \prime}\right)$ annihilate all f.d. $U_{q}(\mathfrak{g})$ modules and so by Theorem $1 u^{\prime}=u^{\prime \prime}$.

Auto: $T_{\alpha}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ is an algebra homomorphism by construction above. Using Lemma 1.2 we see that

$$
T_{\alpha}\left(\left(-K_{\alpha}^{-1} F_{\alpha}\right) v\right)=-K_{\alpha} T_{\alpha}\left(F_{\alpha} v\right)=E_{\alpha} T_{\alpha}(v)
$$

and so $T_{\alpha}\left(-K_{\alpha}^{-1} F_{\alpha}\right)=E_{\alpha}$. Similar manipulations occur using the lemmas above to show surjectivity of T_{α}. For injectivity, a trick similar to the proof of uniqueness works.

Let $T_{i}=T_{\alpha_{i}}, s_{i}=s_{\alpha_{i}}$. Explicitly $T_{i}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ will be

$$
\begin{gathered}
T_{i}\left(K_{\mu}\right)=K_{s_{i}(\mu)}, \quad T_{i}\left(E_{i}\right)=-F_{i} K_{i}, \quad T_{i}\left(F_{i}\right)=-K_{i}^{-1} E_{i} \\
T_{i}\left(E_{j}\right)=\sum_{k=0}^{-a_{j i}}(-1)^{k} q_{i}^{-k} E_{i}^{(r-k)} E_{j} E_{i}^{(k)}
\end{gathered}
$$

Theorem 1.6 (Lusztig). $\left\langle T_{i}\right\rangle_{\alpha_{i} \in \Pi}$ satisfy the braid relations for B_{W}.

[^0]
1.2 PBW Bases for $U_{q}\left(\mathfrak{g}^{+}\right)$

Fix a total ordering $\beta_{1}<\ldots<\beta_{M}$ on Φ^{+}where $M=\left|\Phi^{+}\right|$. Then in the classical setting

$$
\left\{e_{\beta_{1}}^{a_{1}} \ldots e_{\beta_{M}}^{a_{m}} \mid a_{i} \in \mathbb{Z}^{\geq 0}\right\}
$$

gives a basis for $U\left(\mathfrak{g}^{+}\right)$. In the quantum setting we only have E_{α} where α is a simple root. This is where the operators T_{α} come in. First for any $w \in W$, let $\underline{w}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ be a reduced expression for w. Then set

$$
T_{w}:=T_{i_{1}} \ldots T_{i_{k}}
$$

This is well defined byTheorem 1.6 and Matsomoto's theorem.
Lemma 1.7. Let $\underline{w}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ be a reduced expression. Then

$$
\beta_{1}=\alpha_{i_{1}}, \quad \beta_{2}=s_{i_{1}}\left(\alpha_{i_{2}}\right), \quad \beta_{3}=\left(s_{i_{1}} s_{i_{2}}\right)\left(\alpha_{i_{3}}\right), \quad \ldots, \quad \beta_{k}=\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{k-1}}\right)\left(\alpha_{i_{k}}\right)
$$

are k distinct positive roots. In fact they are exactly the positive roots γ s.t. $w^{-1} \gamma<0$.
Corollary 1.8. Let $w=w_{0}$, then the above procedure gives all the positive roots from the simple roots.

Theorem 2 (Lusztig)
Fix a reduced expression $\vec{i}=s_{i_{1}} \ldots s_{i_{M}}$ for w_{0}. Define

$$
\begin{aligned}
& E_{\vec{i}: \beta_{1}}:=E_{i_{1}} \\
& E_{\vec{i}: \beta_{2}}:=T_{i_{1}}\left(E_{i_{2}}\right) \\
& E_{\vec{i}: \beta_{3}}:=T_{i_{1}} T_{i_{2}}\left(E_{i_{3}}\right)
\end{aligned}
$$

and set

$$
B_{\vec{i}}=\left\{E_{\vec{i} ; \beta_{1}}^{\left(a_{1}\right)} E_{\vec{i} ; \beta_{2}}^{\left(a_{2}\right)} \cdots E_{\vec{i}: \beta_{M}}^{\left(a_{M}\right)} \mid a_{i} \in \mathbb{Z}^{\geq 0}\right\}
$$

Then $B_{\vec{i}}$ is a $(P B W)$ basis for $U_{q}\left(\mathfrak{g}^{+}\right)$

Warning. $B_{\vec{i}}$ really depends on \vec{i}. Take $\mathfrak{g}=\mathfrak{s l}_{3}$ with $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$. Then $w_{0}=\vec{a}=s_{1} s_{2} s_{1}, w_{0}=\vec{b}=$ $s_{2} s_{1} s_{2}$. Now notice

$$
B_{\vec{a}}=\left\{E_{1}, E_{1} E_{2}-q^{-1} E_{2} E_{1}, E_{2}\right\} \quad B_{\vec{b}}=\left\{E_{2}, E_{2} E_{1}-q^{-1} E_{1} E_{2}, E_{1}\right\}
$$

2 The Super Case

In the classical case we can choose any set of simple roots Π and $U_{q}(\mathfrak{g})$ will have the same presentation. In the $\mathfrak{s l}_{3}$ example, we could take $\Pi=\left\{\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3}\right\}$ or $\Pi^{\prime}=\left\{\epsilon_{1}-\epsilon_{3}, \epsilon_{3}-\epsilon_{2}\right\}$ and the presentation for $U_{q}(\mathfrak{g})$ will be the same. [Draw on matrices]

Now interpret Π, Π^{\prime} as roots for $\mathfrak{g l}(2 \mid 1)$. The corresponding Dynkin diagrams will be

$$
D(\Pi)=\bigcirc-\otimes
$$

As a result, we have that

$$
\begin{aligned}
U_{q}^{\Pi}(\mathfrak{g l}(2 \mid 1)) & =\mathbb{C}(q)\left\langle E_{1}, E_{2}, \ldots\right\rangle /\left(E_{1}^{2} E_{2}-\left(q+q^{-1}\right) E_{1} E_{2} E_{1}+E_{2} E_{1}^{2}, E_{2}^{2}, \ldots\right) \\
U_{q}^{\Pi^{\prime}}(\mathfrak{g l}(2 \mid 1)) & =\mathbb{C}(q)\left\langle E_{1}^{\prime}, E_{2}^{\prime}, \ldots\right\rangle /\left(\left(E_{1}^{\prime}\right)^{2},\left(E_{2}^{\prime}\right)^{2}, \ldots\right)
\end{aligned}
$$

These two algebras are actually isomorphic but it's not clear at the moment why. To remedy this we will introduce algebras $U_{q}\left(C_{\Pi}\right) \cong U_{q}(\mathfrak{g l}(m \mid n))$ for every Cartan matrix corresponding to a choice of simple roots Π.

Definition 2.1 (Super Cartan Matrices). Let \mathfrak{g} be a basic lie superalgebra and let Π be a choice of simple roots for \mathfrak{g}. For $\alpha_{i} \in \Pi$, let $h_{i}=\left[e_{\alpha_{i}}, f_{\alpha_{i}}\right]_{s}$. Define

$$
C_{\Pi}=\left(c_{i j}\right)=\left(\alpha_{i}\left(h_{j}\right)\right)
$$

Remark. For $\mathfrak{g l}(m \mid n), \alpha_{i}\left(h_{j}\right)=\left(\alpha_{i}, \alpha_{j}\right)_{s}$.
Definition 2.2 (Super Dynkin Diagram). Given a super Cartan Matrix C_{Π}, the Dynkin diagram $D(\Pi)$ will be the same formula as always except we draw a dashed line between i and i if $c_{i j}>0, i \neq j$.

Example 1. For $\mathfrak{g l}(3 \mid 1)$ we have

Π	$\left\{\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3}, \epsilon_{3}-\delta_{4}\right\}$	$\left\{\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\delta_{4}, \delta_{4}-\epsilon_{3}\right\}$
C_{Π}	$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 0\end{array}\right)$	$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$D(\Pi)$	$\bigcirc-\bigotimes-\cdots-\cdots$	

Remark. Let α be an odd isotropic root for $\mathfrak{g l}(m \mid n)$. Then the odd reflection s_{α} is actually equal to $s_{\alpha} \in W\left(\mathfrak{g l}_{m+n}\right)$. In particular the group generated by $W(\mathfrak{g l}(m \mid n))$ and odd reflections is S_{m+n}. Therefore we have an action of S_{m+n} on the super Cartan matrices. Explicitly, given $\Pi=\left\{\alpha_{1}^{\Pi}, \ldots, \alpha_{m+n-1}^{\Pi}\right\}$ and $C_{\Pi}, s_{i}\left(C_{\Pi}\right)=C_{s_{i}(\Pi)}$ where $s_{i}=s_{\alpha_{i}} \in S_{m+n}$. Note that as Π changes the definition of s_{i} changes as well.

For example, let Π, Π^{\prime} be the LHS, RHS respectively above. Then $s_{3}\left(C_{\Pi}\right)=C_{s_{\epsilon_{3}-\delta_{4}}(\Pi)}=C_{\Pi^{\prime}}$, and $s_{1}\left(C_{\Pi}\right)=s_{2}\left(C_{\Pi}\right)=\Pi$. In general, $W(\mathfrak{g l}(m \mid n)) \subset W\left(\mathfrak{g l}_{m+n}\right)$ does not change C_{Π}.

Definition 2.3. Given $C=C_{\Pi}$ for $\mathfrak{g l}(m \mid n)$, let $U_{q}(C)$ be the \mathbb{Z}_{2} graded associative $\mathbb{C}(q)$ algebra with generators $E_{C, i}, F_{C, i}, K_{C, i}^{ \pm 1}$ with parity $p\left(E_{C, i}\right)=p\left(F_{C, i}\right)=p(i)=p\left(\alpha_{i}\right), p\left(K_{C, i}\right)=0$ satisfying the relations (We drop C for convenience)

$$
\begin{array}{rlrl}
E_{i}^{2} & =0 & \text { if } c_{i i} & =0 \\
E_{i} E_{j} & =(-1)^{p(i) p(j)} E_{j} E_{i} & \text { if } i \nsim j \\
E_{i}^{2} E_{j}+E_{j} E_{i}^{2} & =\left(q+q^{-1}\right) E_{i} E_{j} E_{i} & \text { if } i \sim j \text { and } c_{i i} \neq 0 \\
{[2] E_{j} E_{i} E_{k} E_{j}} & =(-1)^{p(k) p(i)+p(i)} E_{j} E_{k} E_{j} E_{i}+(-1)^{p(k) p(i)+p(k)} E_{k} E_{j} E_{i} E_{j} & \text { if } i \sim j \sim k \text { and } c_{j j}=0 \\
& +(-1)^{p(k)} E_{j} E_{i} E_{j} E_{k}+(-1)^{p(i)} E_{i} E_{j} E_{k} E_{j} & \text { and } c_{i j} \neq c_{j k}
\end{array}
$$

2.1 The $U_{q}(\mathfrak{g l}(m \mid 1))$ Case

From now on only work with $U_{q}(\mathfrak{g l}(m \mid 1))$.

Theorem 3 (Clark)
Let C be a super Cartan matrix for $U_{q}(\mathfrak{g l}(m \mid 1))$ and set $D=s_{i}(C)$. Then define $T_{i}^{s}: U_{q}(C) \rightarrow$ $U_{q}(D)$ as

$$
T_{i}^{s}\left(E_{C, j}\right)= \begin{cases}-F_{D, i} K_{D, i} & \text { if } j=i \\ E_{D, i} E_{D, j}-(-1)^{p_{D}(i) p_{D}(j)} q^{D_{i j}} E_{D, j} E_{D, i} & \text { if } j \sim i \\ E_{D, j} & \text { if } j \nsim i\end{cases}
$$

We omit the definition for the other generators. Then T_{i}^{s} is a \mathbb{Z}_{2}-algebra isomorphism.

Proof. We check some relations namely Eq. (1). Let $C_{j j}=0$ so that $E_{C, j}^{2}=0$
Case 1: $i \nsim j$ We then have that $D_{j j}=0$ as well since s_{i} only changes the nodes adjacent to it. Thus

$$
T_{i}^{s}\left(E_{C, j}\right)^{2}=E_{D, j}^{2}=0
$$

Case 2: $i \sim j . s_{i}\left(\alpha_{i}\right)=-\alpha_{i} \Longrightarrow p_{D}(i)=p_{C}(i)$ while since $s_{i}\left(\alpha_{j}\right)=\alpha_{j}+\alpha_{i}$, we see that

$$
p_{D}(j)=p_{C}(j)+p_{C}(i)=1+p_{D}(i) \Longrightarrow i \text { and } j \text { have different parity }
$$

In other words, the effect of s_{i} on the Dynkin diagram locally looks like

We check the first case (so $E_{j}^{2}=0$) and also assume $D_{i j}=1$ [Clark does $\left.D_{i j}=-1\right]$ We compute

$$
\begin{aligned}
T_{i}^{s}\left(E_{C, j}\right)^{2} & =\left(E_{D, i} E_{D, j}-q E_{D, j} E_{D, i}\right)^{2} \\
& =E_{i} E_{j} E_{i} E_{j}-q E_{i} E_{j}^{2} E_{i}-q E_{j}^{2} E_{j}+q^{2} E_{j} E_{i} E_{j} E_{i} \\
& \stackrel{E q .(3)}{ } \frac{E_{j} E_{i}^{2} E_{j}}{\left(q+q^{-1}\right)}-q E_{j} E_{i}^{2} E_{j}+\frac{q^{2} E_{j} E_{i}^{2} E_{j}}{\left(q+q^{-1}\right)}=0
\end{aligned}
$$

Proposition 2.4 (Clark). The T_{i}^{s} satisfy braid relations of type A between appropriate $U_{q}(C)$, i.e. if $i \nsim j$, given a super Cartan matrix B, let $C=s_{i}(B), D=s_{j}(C)$, then as maps $U_{q}(B) \rightarrow U_{q}(D)$ $T_{i}^{s} T_{j}^{s}=T_{j}^{s} T_{i}^{s}$, and similarly with $i \sim j$.

Theorem 4 (Clark)
Fix Π for $\mathfrak{g l}(m \mid 1)$ and let $C=C_{\Pi}$. Fix a reduced expression $\vec{i}=s_{i_{1}} \ldots s_{i_{K}}$ for $w_{0} \in S_{m+1}$. Define $\beta_{t}^{\Pi}=s_{i_{1}} \cdots s_{i_{t-1}}\left(\alpha_{i_{t}}^{\Pi}\right)$ and let $C_{\vec{i}, t}=s_{t-1} \cdots s_{i_{1}}(C)\left(\right.$ so $\left.C_{\vec{i}, 1}=C\right)$. Finally let

$$
\begin{aligned}
E_{\vec{i}: \beta_{1}^{\Pi}} & :=E_{C, i_{1}} \\
E_{\vec{i}: \beta_{2}^{\Pi}} & :=T_{i_{1}}^{s}\left(E_{C_{\vec{i}, 2}, i_{2}}\right) \\
& \vdots \\
E_{\vec{i}: \beta_{t}^{\Pi}} & :=T_{i_{1}}^{s} \ldots T_{i_{t-1}}^{s}\left(E_{C_{\vec{i}, t}, i_{t}}\right)
\end{aligned}
$$

and set

$$
B_{\vec{i}}^{\Pi}=\left\{E_{\vec{i}: \beta_{1}^{\Pi}}^{\left(a_{1}\right)} E_{\vec{i}: \beta_{2}^{\Pi}}^{\left(a_{2}\right)} \cdots E_{\vec{i}: \beta_{L}^{\Pi}}^{\left(a_{L}\right)} \mid a_{i} \in \mathbb{Z}^{\geq 0}, a_{s}<2 \text { if } p\left(\beta_{s}^{\Pi}\right)=1\right\}
$$

Then $B_{\vec{i}}^{\Pi}$ is a $(P B W)$ basis for $U_{q}^{+}(C)$.

Remark. Because $E_{C_{\vec{i}, t}, i_{t}} \in U_{q}\left(C_{\vec{i}, t}\right)=U_{q}\left(s_{t-1} \ldots s_{i_{1}}(C)\right)$ we see that

$$
T_{i_{1}}^{s} \ldots T_{i_{t-1}}^{s}\left(E_{C_{\vec{i}, t}, i_{t}}\right) \in U_{q}\left(\left(s_{i_{1}} \ldots s_{i_{t-1}}\right)\left(s_{i_{t-1}} \ldots s_{i_{1}}\right)(C)\right)=U_{q}(C)
$$

The miracle is that it's in fact in $U_{q}^{+}(C)$.

[^0]: ${ }^{1}\left\langle\mu, \alpha^{\vee}\right\rangle$ is also the length of the α string through V_{μ}.

