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1 The Classical Case

Let g be a lie algebra and let α ∈ Π. Let V be locally finite g−module(action of eN±αv = 0 ∀v ∈ V for

some N). Then

sα = exp(eα) exp(−fα) exp(eα)

gives an automorphism of V as a v.s.

Lemma 1.1. (a) sα(Vµ) = Vsα(µ)

(b) ⟨sα⟩α∈Π gives an action of BW on V .

(c) sα(X · v) = sα(X) · sα(v) for all X ∈ U(g).

Proof. (c) U(g) under the adjoint action is locally finite because on generators

• adei(ei) = 0 • ad1−aij
ei (ej) = 0 i ̸= j • adei(hj) = aijei • adei(fj) = δijhi

and adei acts by derivations on U(g). Thus sα gives an automorphism of U(g) as a vs. ■

Remark. sα : U(g) → U(g) is an algebra homomorphism! Indeed one can compute

adsα(ei)(sα(hj)) = sα(ei) · sα(hj)
(c)
== sα(adei(hj)) = aijsα(ei)

and similarly with the other relations.

Now when we move to Uq(g) we will have that Uq(g) is no longer locally finite under the adjoint action

anymore. Indeed we have that

adqei(ei) = e2i − q2e2i ̸= 0

Thus the formula for sα above will not give a map Uq(g) → Uq(g). However Lusztig was nevertheless

able to define maps Tα satisfying the conditions in the lemma above.

1.1 The Braid Group Action

The idea here is to reverse the flow of logic, to start from (c) and work our way back up to the definition.

Let V be a f.d. Uq(sl2)−module and v ∈ Vm. Then define

T (v) =
∑

a,b,c≥0;−a+b−c=m

(−1)bqb−acE(a)F (b)E(c)v

Note T : Vqm → Vq−m (set a = c = 0).

Remark. T (v) is just the quantum version of the action of sα on v. Thus T is a bijection on V (switch

the roles of E,F , etc).
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Section 1.2 Cailan Li The Braid Group Action

In general for v ∈ Vµ we have

T → Tα, E, F → Eα, Fα, q → qα, m →
〈
µ, α∨〉

Note that Tα : Vµ → Vµ−⟨µ,α∨⟩α = Vsα(µ) and thus why we chose m as above1.

Lemma 1.2. ∀ f.d. Uq(sl2)−modules V and v ∈ V

T (Ev) = (−FK)T (v) T (Fv) = (−K−1E)T (v) T (Kv) = K−1T (v)

Proof. Suffice to check on L(qn) by s.s. ■

Lemma 1.3. Let ⟨α, β⟩ = 0. Then Eβ · Tα(v) = Tα(Eβ · v), similarily for Fβ.

Proof. Eβ commutes past everything in the formula for Tα. ■

Lemma 1.4. ∀ f.d. Uq(g)−modules V and v ∈ V , let r = −
〈
β, α∨〉, then

Tα(Eβv) =
(
ad

E
(r)
α
(Eβ)

)
· Tα(v)

Theorem 1

Let u ∈ Uq(g). If u annihilates all finite-dimensional U−modules, then u = 0.

Proposition 1.5. Let α be a simple root. ∀u ∈ U , ∃!u′ ∈ U s.t.

Tα(uv) = u′Tα(v) (*)

for all f.d. U−modules V and v ∈ V . Furthermore Tα(u) := u′ is an algebra automorphism of U .

Proof. Existence: For u1, u2 ∈ U suppose we found u′1, u
′
2 satisfying (∗). Then =⇒ (u1+u2)

′ := u′1+u′2
and (u1u2)

′ := u′1u
′
2 also satisfies (∗). Thus it suffices to show existence on generators of Uq(g), but that

is exactly the content of the previous 3 lemmas.

Uniqueness: Suppose u′, u′′ both satisfy (∗) for u. Then (u′ − u′′)Tα(v) = 0. But Tα is bijective and

thus (u′ − u′′) annihilate all f.d. Uq(g) modules and so by Theorem 1 u′ = u′′.

Auto: Tα : Uq(g) → Uq(g) is an algebra homomorphism by construction above. Using Lemma 1.2 we

see that

Tα((−K−1
α Fα)v) = −KαTα(Fαv) = EαTα(v)

and so Tα(−K−1
α Fα) = Eα. Similar manipulations occur using the lemmas above to show surjectivity

of Tα. For injectivity, a trick similar to the proof of uniqueness works. ■

Let Ti = Tαi , si = sαi . Explicitly Ti : Uq(g) → Uq(g) will be

Ti(Kµ) = Ksi(µ), Ti(Ei) = −FiKi, Ti(Fi) = −K−1
i Ei

Ti(Ej) =

−aji∑
k=0

(−1)kq−k
i E

(r−k)
i EjE

(k)
i

Theorem 1.6 (Lusztig). ⟨Ti⟩αi∈Π satisfy the braid relations for BW .
1〈µ, α∨〉 is also the length of the α string through Vµ.
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1.2 PBW Bases for Uq(g
+)

Fix a total ordering β1 < . . . < βM on Φ+ where M = |Φ+|. Then in the classical setting{
ea1β1

. . . eamβM
|ai ∈ Z≥0

}
gives a basis for U(g+). In the quantum setting we only have Eα where α is a simple root. This is

where the operators Tα come in. First for any w ∈ W , let w = si1si2 . . . sik be a reduced expression for

w. Then set

Tw := Ti1 . . . Tik

This is well defined byTheorem 1.6 and Matsomoto’s theorem.

Lemma 1.7. Let w = si1si2 . . . sik be a reduced expression. Then

β1 = αi1 , β2 = si1(αi2), β3 = (si1si2)(αi3), . . . , βk = (si1si2 . . . sik−1
)(αik)

are k distinct positive roots. In fact they are exactly the positive roots γ s.t. w−1γ < 0.

Corollary 1.8. Let w = w0, then the above procedure gives all the positive roots from the simple roots.

Theorem 2 (Lusztig)

Fix a reduced expression i⃗ = si1 . . . siM for w0. Define

E⃗i:β1
: = Ei1

E⃗i:β2
: = Ti1(Ei2)

E⃗i:β3
: = Ti1Ti2(Ei3)

...

and set

B⃗i =
{
E

(a1)

i⃗:β1
E

(a2)

i⃗:β2
· · ·E(aM )

i⃗:βM

∣∣∣ai ∈ Z≥0
}

Then B⃗i is a (PBW) basis for Uq(g
+)

Warning. B⃗i really depends on i⃗. Take g = sl3 with Π = {α1, α2}. Then w0 = a⃗ = s1s2s1, w0 = b⃗ =

s2s1s2. Now notice

Ba⃗ =
{
E1, E1E2 − q−1E2E1, E2

}
B

b⃗
=

{
E2, E2E1 − q−1E1E2, E1

}
2 The Super Case

In the classical case we can choose any set of simple roots Π and Uq(g) will have the same presentation.

In the sl3 example, we could take Π = {ϵ1 − ϵ2, ϵ2 − ϵ3} or Π′ = {ϵ1 − ϵ3, ϵ3 − ϵ2} and the presentation

for Uq(g) will be the same. [Draw on matrices]

Now interpret Π,Π′ as roots for gl(2|1). The corresponding Dynkin diagrams will be

D(Π) = D(Π′) =
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Section 2.1 Cailan Li The Super Case

As a result, we have that

UΠ
q (gl(2|1)) = C(q) ⟨E1, E2, . . .⟩

/
(E2

1E2 − (q + q−1)E1E2E1 + E2E
2
1 , E2

2 , . . .)

UΠ′
q (gl(2|1)) = C(q)

〈
E′

1, E
′
2, . . .

〉/
((E′

1)
2, (E′

2)
2, . . .)

These two algebras are actually isomorphic but it’s not clear at the moment why. To remedy this we

will introduce algebras Uq(CΠ) ∼= Uq(gl(m|n)) for every Cartan matrix corresponding to a choice of

simple roots Π.

Definition 2.1 (Super Cartan Matrices). Let g be a basic lie superalgebra and let Π be a choice of

simple roots for g. For αi ∈ Π, let hi = [eαi , fαi ]s. Define

CΠ = (cij) = (αi(hj))

Remark. For gl(m|n), αi(hj) = (αi, αj)s.

Definition 2.2 (Super Dynkin Diagram). Given a super Cartan Matrix CΠ, the Dynkin diagram D(Π)

will be the same formula as always except we draw a dashed line between i and i if cij > 0, i ̸= j.

Example 1. For gl(3|1) we have

Π {ϵ1 − ϵ2, ϵ2 − ϵ3, ϵ3 − δ4} {ϵ1 − ϵ2, ϵ2 − δ4, δ4 − ϵ3}

CΠ

 2 −1 0

−1 2 −1

0 −1 0

  2 −1 0

−1 0 1

0 1 0


D(Π)

Remark. Let α be an odd isotropic root for gl(m|n). Then the odd reflection sα is actually equal to

sα ∈ W (glm+n). In particular the group generated by W (gl(m|n)) and odd reflections is Sm+n. There-

fore we have an action of Sm+n on the super Cartan matrices. Explicitly, given Π =
{
αΠ
1 , . . . , α

Π
m+n−1

}
and CΠ, si(CΠ) = Csi(Π) where si = sαΠ

i
∈ Sm+n. Note that as Π changes the definition of si changes

as well.

For example, let Π,Π′ be the LHS, RHS respectively above. Then s3(CΠ) = Csϵ3−δ4
(Π) = CΠ′ , and

s1(CΠ) = s2(CΠ) = Π. In general, W (gl(m|n)) ⊂ W (glm+n) does not change CΠ.

Definition 2.3. Given C = CΠ for gl(m|n), let Uq(C) be the Z2 graded associative C(q) algebra with

generators EC,i, FC,i,K
±1
C,i with parity p(EC,i) = p(FC,i) = p(i) = p(αi), p(KC,i) = 0 satisfying the

relations (We drop C for convenience)

E2
i = 0 if cii = 0 (1)

EiEj = (−1)p(i)p(j)EjEi if i ̸∼ j (2)

E2
i Ej + EjE

2
i = (q + q−1)EiEjEi if i ∼ j and cii ̸= 0 (3)

[2]EjEiEkEj = (−1)p(k)p(i)+p(i)EjEkEjEi + (−1)p(k)p(i)+p(k)EkEjEiEj if i ∼ j ∼ k and cjj = 0 (4)

+ (−1)p(k)EjEiEjEk + (−1)p(i)EiEjEkEj and cij ̸= cjk
... (5)
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2.1 The Uq(gl(m|1)) Case

From now on only work with Uq(gl(m|1)).

Theorem 3 (Clark)

Let C be a super Cartan matrix for Uq(gl(m|1)) and set D = si(C). Then define T s
i : Uq(C) →

Uq(D) as

T s
i (EC,j) =


−FD,iKD,i if j = i

ED,iED,j − (−1)pD(i)pD(j)qDijED,jED,i if j ∼ i

ED,j if j ̸∼ i

We omit the definition for the other generators. Then T s
i is a Z2−algebra isomorphism.

Proof. We check some relations namely Eq. (1). Let Cjj = 0 so that E2
C,j = 0

Case 1: i ̸∼ j We then have that Djj = 0 as well since si only changes the nodes adjacent to it. Thus

T s
i (EC,j)

2 = E2
D,j = 0

Case 2: i ∼ j. si(αi) = −αi =⇒ pD(i) = pC(i) while since si(αj) = αj + αi, we see that

pD(j) = pC(j) + pC(i) = 1 + pD(i) =⇒ i and j have different parity

In other words, the effect of si on the Dynkin diagram locally looks like

j i

si−→
j i

or

j i

si−→
j i

We check the first case (so E2
j = 0) and also assume Dij = 1 [Clark does Dij = −1] We compute

T s
i (EC,j)

2 =(ED,iED,j − qED,jED,i)
2

=EiEjEiEj − qEiE
2
jEi − qEjE

2
i Ej + q2EjEiEjEi

Eq. (3)
==

EjE
2
i Ej

(q + q−1)
− qEjE

2
i Ej +

q2EjE
2
i Ej

(q + q−1)
= 0

■

Proposition 2.4 (Clark). The T s
i satisfy braid relations of type A between appropriate Uq(C), i.e.

if i ̸∼ j, given a super Cartan matrix B, let C = si(B), D = sj(C), then as maps Uq(B) → Uq(D)

T s
i T

s
j = T s

j T
s
i , and similarly with i ∼ j.
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Theorem 4 (Clark)

Fix Π for gl(m|1) and let C = CΠ. Fix a reduced expression i⃗ = si1 . . . siK for w0 ∈ Sm+1. Define

βΠ
t = si1 · · · sit−1(α

Π
it) and let C⃗i,t = st−1 · · · si1(C) (so C⃗i,1 = C). Finally let

E⃗i:βΠ
1
: = EC,i1

E⃗i:βΠ
2
: = T s

i1(EC⃗i,2,i2
)

...

E⃗i:βΠ
t
: = T s

i1 . . . T
s
it−1

(EC⃗i,t,it
)

...

and set

BΠ
i⃗
=

{
E

(a1)

i⃗:βΠ
1

E
(a2)

i⃗:βΠ
2

· · ·E(aL)

i⃗:βΠ
L

∣∣∣ai ∈ Z≥0, as < 2 if p(βΠ
s ) = 1

}
Then BΠ

i⃗
is a (PBW) basis for U+

q (C).

Remark. Because EC⃗i,t,it
∈ Uq(C⃗i,t) = Uq(st−1 . . . si1(C)) we see that

T s
i1 . . . T

s
it−1

(EC⃗i,t,it
) ∈ Uq((si1 . . . sit−1)(sit−1 . . . si1)(C)) = Uq(C)

The miracle is that it’s in fact in U+
q (C).
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